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Abstract
In this paper, we present a spintronic tunnelling theory for ferromag-
net/insulator/ferromagnet (FM/I/FM) junctions. With the use of Airy functions,
it can analytically account for both the low-bias and the high-bias tunnelling
magnetoresistances (TMRs). We find that the sign-change behaviour of TMR
can only occur in the low-bias region,due to the quantum coherence in FM/I/FM
junctions. In the high-bias region, the TMR will oscillate between positive and
negative with increasing bias voltage. Physically, this oscillation arises from
the interference between the incident and reflected electron waves in the barrier
region. The effects of the barrier height, the barrier width and the electron
effective mass in the barrier are studied systematically. The theoretical results
obtained from the exact Airy functions agree well with TMR experiments on
Ta2O5- and Al2O3-barrier junctions, within the whole measurable range of bias
voltage.

1. Introduction

Tunnelling magnetoresistance (TMR) in ferromagnet/insulator/ferromagnet (FM/I/FM)
junctions was first studied theoretically and observed experimentally by Jullière [1] in 1975.
Now, it attracts intensive attention because of its great potential in information technology. For
real applications, it is very important to know the bias dependence of TMR. Early experimental
studies were limited within a small range of bias. In 1999, Sharma et al [2] fabricated Ta2O5-
barrier junctions and began an experimental investigation of the bias dependence of TMR
within a widened range of bias. As a result, two new features have been found within the
measurable range of the applied voltage1. One is that, as the bias voltage is increased, the
TMR decreases rapidly and changes its sign from positive to negative at a finite voltage. The

1 Beyond this range, the dielectric oxide barrier will be broken down due to the smallness of the barrier thickness
and its resulting strong electric field.
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other is that, when the bias voltage is further increased, the TMR becomes concave-up with a
tail bending upwards with the increase of the applied voltage (see figure 2 in [2]). The second
feature reminds us that the tail may be a physical symbol that the TMR would be oscillatory if
the bias voltage went out of the measurable range of the applied voltage. In addition, a junction
with an Al2O3 barrier shows [2] that the TMR decreases monotonically with the increase of
bias voltage but remains positive before the breakdown of the junction, which implies that the
measurable range of bias voltage for the Al2O3-barrier junction lies in such a low-bias region
that the sign change and oscillation could not be observed, in comparison to the Ta2O5-barrier
junction.

In order to interpret the experiments, we have developed a theory [3], by extending the
Slonczewski model [4] from the zero-bias case to the low-bias case. In this theory, the single-
electron potential is assumed to be trapezoidal within the barrier region, and the tunnelling
electron is described approximately by the Wentzel–Kramers–Brillouin (WKB) wavefunction.
Upon matching the WKB wavefunction quantum-mechanically with the wavefunctions of the
two FM electrodes at the two interfaces, we find that the sign-change behaviour of TMR
originates from the quantum coherence in the FM/I/FM system [3]. Although our previous
work [3] succeeds in explaining the sign change of TMR, it cannot explain the concavity or
oscillation of TMR at the high-bias voltage. In addition, the numerical calculation performed
by Montaigne et al [5] shows an oscillatory TMR within the high-bias regime. However, this
kind of numerical method is not convenient for revealing the physical mechanism responsible
for the oscillation of TMR.

The purpose of this paper is to study the physical mechanism for the oscillation of TMR in
FM/I/FM junctions analytically. To this end, we will establish a unified spintronic tunnelling
theory suitable not only for the low-bias region but also for the high-bias region.

The rest of the paper is organized as follows. In section 2, we present the spintronic
tunnelling model for the FM/I/FM junction, and derive the exact transmission coefficients and
TMR for the case of a finite applied voltage. In section 3, we study in an analytical manner
the mechanisms for the sign change and oscillation of TMR, then discuss the influences of the
barrier height, barrier width and electron effective mass on the oscillation of TMR, and then
qualitatively compare the theoretical results with the experiments. Finally, a brief summary
will be given in section 4.

2. Spintronic tunnelling model

Following previous work [3, 6–8], we adopt the free electron model with parabolic bands for
the three regions of the FM/I/FM system. As usual, the energy zero is selected at the centre of
the exchange splitting of the left electrode. Therefore, the system considered can be described
by the spintronic tunnelling model as follows:

HL = − h̄2

2m
∇2 − σL� + φ (x) , (x � 0) , (1)

HB = − h̄2

2mB
∇2 + φ (x) , (0 < x < d) , (2)

HR = − h̄2

2m
∇2 − σR� + φ (x) , (x � d) , (3)

where HL, HR and HB are the longitudinal parts of the Hamiltonians for the left and right
electrodes and the barrier, respectively;� is the half exchange splitting between the two spin
bands of the ferromagnetic electrodes (the two electrodes are supposed to be made of identical
ferromagnetic material); m and mB are the effective masses of the electrons in the electrodes
and barrier; σL(R) = ±1 denote respectively the up- and down-spin states of the electrons in
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Figure 1. A schematic potential for
the ferromagnetic junction under the bias
V > 0.

the left (right) ferromagnetic electrode (the magnetizations of the two electrodes are parallel
if σL = σR, and antiparallel if σL = −σR); and φ(x) represents the single-particle potential,

φ (x) =






0, x < 0

φ0 − x

d
eV , 0 � x � d

−eV , x > d ,

(4)

with V being the bias voltage, φ0 the barrier height without any bias voltage, and d the barrier
width. The potential φ (x) is shown schematically in figure 1.

Obviously, the potential φ (x) within the left or right FM electrode (x < 0 or x > d)
is constant and independent of the longitudinal coordinates x . Therefore, the wavefunctions
within the two ferromagnetic electrodes are simply plane waves,

ψσL (x) = k−1/2
σL

(eikσL x + RσL e−ikσL x), (x � 0) , (5)

ψσR (x) = k−1/2
σR

CσR eikσR (x−d), (x � d) , (6)

where

kσL =
(

2m

h̄2

)1/2 √

EL
x + σL�, (7)

kσR =
(

2m

h̄2

)1/2 √

ER
x + eV + σR�. (8)

Here EL
x and ER

x stand for the longitudinal part of the electron energy in the left and right
electrodes, respectively.

As regards the barrier region, the potential φ(x) is a linear function of x , or of trapezoidal
shape, the exact wavefunction must be expressed in terms of the Airy functions Ai(z) and Bi(z),

ψB(x) = a · Ai(z) + b · Bi(z), (9)

where a and b are the coefficients which should be determined by quantum-mechanical match-
ing, and

z = −z ′
(

x +
EB

x − φ0

eV
d

)

, (10)

z′ =
(

2mBeV

h̄2d

) 1
3

. (11)

Here EB
x is the longitudinal part of the electron energy within the barrier region.
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Because of energy conservation and the conservation of the lateral momentum, the
longitudinal energies EL

x , ER
x and EB

x appearing in equations (7), (8) and (10) are not
independent of each other; they satisfy the relations [9]

EB
x = EL

x + EL
t

(

1 − m

mB

)

, (12)

ER
x = EL

x , (13)

where EL
t is the lateral part of the electron energy. Equation (13) is obtained simply because

the two electrodes are assumed to have the same electron effective masses.
It should be pointed out that the solution of equation (9) is always valid no matter how

large the bias voltage V is, i.e., equation (9) is appropriate for both the low- and high-bias
regions. We shall see in the following section that the ψB(x) can be approximated by the
WKB wavefunction in the low-bias region, which is the case we considered in [3, 6–8]. If
the bias voltage becomes high, there will arise a turning point in the barrier region, the WKB
approximation for ψB(x) is no longer valid, and a qualitative analysis must be done carefully.
That is just the case in which we are interested in this paper.

After quantum-mechanical matching of the wavefunctionsψσL (x), ψσR (x) and ψB(x) at
x = 0 and d , the transmission coefficient TσLσR can be obtained as follows:

TσLσR = 4̃kσR

π2k̃σL

{[

(Ai(z0)Bi′(zd)− Ai′(zd)Bi(z0))

+
k̃σR

k̃σL

(Ai(zd)Bi′(z0)− Ai′(z0)Bi(zd))

]2

+

[
k̃σR

z̃ ′ (Ai(z0)Bi(zd)− Ai(zd)Bi(z0))

+
z̃′

k̃σL

(Ai′(z0)Bi′(zd)− Ai′(zd)Bi′(z0))

]2}−1

, (14)

where

k̃σL = kσL

m
, (15)

k̃σR = kσR

m
, (16)

z̃′ = z′

mB
, (17)

z0 = z(EB
x , V , 0) = z ′φ0 − EB

x

eV
d, (18)

zd = z(EB
x , V , d) = z′φ0 − (EB

x + eV )

eV
d. (19)

If the two electrodes are paramagnetic, the transmission coefficient TσLσR will automatically
reduce to the exact result [10] derived historically first by Gundlach.

It is worth noting that the transmission coefficient TσLσR of equation (14) is a rigorous
solution to the spintronic tunnelling model of equations (1)–(3), because ψσL(x), ψσR (x) and
ψB(x) are all exact wavefunctions, and their connections at both x = 0 and d are fully
quantum-mechanical matched.
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Figure 2. The comparison be-
tween the approximate TMR and
the exact TMR. The calculat-
ing parameters are EF↑ = 5eV ,
mB/m = 1, kF↓/kF↑ = 0.22,
d = 20 Å, κ2

F/κ
2
F↑ = 0.6.

With the rigorous transmission coefficient TσLσR given above, the tunnelling current
densities can be expressed as [11]

JP(V ) = em

4π2h̄3

∫

dEL
x

∫

dEL
t (T↑↑ + T↓↓)

[
f (EL

x + EL
t )− f (EL

x + EL
t + eV )

]
, (20)

JAP(V ) = em

4π2h̄3

∫

dEL
x

∫

dEL
t (T↑↓ + T↓↑)

[
f (EL

x + EL
t )− f (EL

x + EL
t + eV )

]
, (21)

where the subscripts P and AP refer to parallel and antiparallel configurations of the two FM
electrodes, respectively.

Usually, the TMR is defined as

TMR ≡ JP (V )− JAP (V )

JP (V )
= �J (V )

JP (V )
, (22)

which can be calculated from equations (20) and (21).
Up to now, a spintronic tunnelling theory for the FM/I/FM system has been established;

obviously, it is not only suitable for the low-bias region but also suitable for the high-bias
region.

3. Numerical results and discussions

By using equations (14), (20)–(22), a numerical calculation can be performed. Similarly to
our previous works [3, 8], we choose EF↑, κ2

F/k2
F↑, kF↓/kF↑, d and mB/m as the physical

parameters. Here, EF↑ denotes the Fermi energy of the spin-up electrons in the FM electrodes;
κ2

F/k2
F↑ = (φ0 − µ)/EF↑ the relative barrier height to the chemical potential µ; kF↓/kF↑ the

ratio of the Fermi wavenumbers for different spin bands. Hereafter, we will consider only the
zero-temperature case and a thick barrier junction. The results are shown by the solid curve in
figure 2. One can easily see that, as the bias voltage increases, the TMR first decreases rapidly,
then changes its sign from positive to negative at a critical voltage Vc, and then bends upwards
and begins to oscillate. This is in agreement with the TMR experiments on the Ta2O5-barrier
junction; in particular, it reproduces the two new features of TMR: the sign change within the
low-bias region and the oscillation within the high-bias region.

Now, we turn to analyse in detail the physical mechanisms responsible for the sign change
and oscillation of TMR. To this end, we shall follow Gundlach [10] and Duke [11] to define two
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Figure 3. Schematic illustration
for (a): the low-bias case and (b):
the high-bias case.

regions according to the magnitude of the bias voltage: the low-bias region and the high-bias
region. As can be seen later, the TMR will show quite different behaviours in these two regions.

3.1. The low-bias region

In this region, the Fermi level is far below from the barrier height: φ0 − µ � 0, and the
bias voltage is quite small: eV � φ0 − µ, which is schematically depicted in figure 3(a).
Mathematically, this is equivalent to z0 � 1 and zd � 1. In such a case, z � 1, the Airy
functions can be approximated as [12]

Ai(z) = 1
2π

− 1
2 z− 1

4 e−γ , (23)

Bi(z) = π− 1
2 z− 1

4 eγ , (24)

Ai′(z) = − 1
2π

− 1
2 z

1
4 e−γ , (25)

Bi′(z) = π− 1
2 z

1
4 eγ , (26)

where

γ = 2

3
z

3
2 . (27)

Note that, when z � 1, Ai(z) and Ai′(z) are exponentially decreasing functions of z, whereas
Bi(z) and Bi′(z) the exponentially increasing functions of z.

Inserting equations (23)–(26) into equation (14), one has

TσLσR = 16̃kσL k̃σR κ̃Lκ̃R
(
κ̃2

L + k̃2
σL

) (
κ̃2

R + k̃2
σR

)e−2
∫ d

0 κ̃ dx , (28)

where

κ̃L = κ̃(EB
x , 0, V ) = 1

mB

(
2mB

h̄2

)1/2 (
φ0 − EB

x

)1/2
, (29)

κ̃R = κ̃(EB
x , d, V ) = 1

mB

(
2mB

h̄2

)1/2 (
φ0 − eV − EB

x

)1/2
, (30)

κ̃ = κ̃(EB
x , x, V ) = 1

mB

(
2mB

h̄2

)1/2 (
φ0 − x

d
eV − EB

x

)1/2
. (31)
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In deriving equation (28) we have used the relation
∫ d

0
κ̃ dx = 2

3

(
z3/2

0 − z3/2
d

)
� 1, (32)

because, as mentioned above, the barrier width is rather thick.
We can now calculate the approximate TMR from equations (20)–(22) and (28); this is

shown by the dotted curve in figure 2. Clearly, the approximate result is in good agreement
with the exact one (the solid curve) within the low-bias range. This demonstrates that the above
approximation is quite accurate and is thus suitable for discussing the sign-change mechanism
of TMR in the low-bias region. That can be done as follows.

We can obtain from equations (20), (21) and (28) that

�J (V ) = em

4π2h̄3

∫

dEL
x

∫

dEL
t A(EL

x , EL
t , V )D(EL

x , EL
t , V )

× exp

(

−2
∫ d

0
κ̃ dx

)
[

f (EL
x + EL

t )− f (EL
x + EL

t + eV )
]
, (33)

where

A(EL
x , EL

t , V ) = 4̃κL
(
k̃L↑ − k̃L↓

) (
κ̃2

L − k̃L↑k̃L↓
)

(
κ̃2

L + k̃2
L↑

) (
κ̃2

L + k̃2
L↓

) · 4̃κR
(
k̃R↑ − k̃R↓

)

(
κ̃2

R + k̃2
R↑

) (
κ̃2

R + k̃2
R↓

) , (34)

D(EL
x , EL

t , V ) = κ̃2
R − k̃R↑k̃R↓. (35)

From equations (15), (16), (29) and (30), it is easy to show that A(EL
x , EL

t , V ) > 0,
i.e. A(EL

x , EL
t , V ) does not change sign with V [3, 6, 8]. By substituting equations (16)

and (30) into (35), the quantum-coherence factor D(EL
x , EL

t , V ) becomes

D(EL
x , EL

t , V ) = 2

mBh̄2

[

φ0 + EL
t

(
m

mB
− 1

)

− (
eV + EL

x

)
]

− 2

mh̄2

√

(EL
x + eV )2 −�2,

(36)

which is a rapidly decreasing function of V , and will become negative when the bias goes
beyond the critical voltage Vc. That is the reason why the TMR decreases and changes in sign
within the low-bias range [3, 6, 8].

Setting mB = m, the longitudinal part of the electron energy EL
x , EB

x and ER
x can be simply

written as Ex . Therefore, equation (28) reduces to

TσLσR = 16kσLkσRκLκR
(
κ2

L + k2
σL

) (
κ2

R + k2
σR

)e−2
∫ d

0 κ dx , (37)

where

κL =
(

2m

h̄2

)1/2

(φ0 − Ex)
1/2 , (38)

κR =
(

2m

h̄2

)1/2

(φ0 − eV − Ex)
1/2 , (39)

κ =
(

2m

h̄2

)1/2 (
φ0 − x

d
eV − Ex

)1/2
. (40)

Equation (37) is just the transmission coefficient given in [3, 6], from which the other results
thereof can also be reproduced identically. In other words, the results of [3, 6] can be derived
again from the present rigorous solution of equation (14); this proves that the adoption of the
WKB approximation forψB(x) in [3, 6] is rational and completely appropriate for the low-bias
region.
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3.2. The high-bias region

In this region, the Fermi level is also far below from the barrier height: φ0 − µ � 0, but
the bias voltage is quite large: eV � φ0 − µ, which is schematically depicted in figure 3(b).
This means that z0 � 1 but zd � −1. For z � −1, the Airy functions must, instead of
equations (23)–(26), be approximated as [12]

Ai(z) = π− 1
2 |z|− 1

4 sin

(

γ +
π

4

)

, (41)

Bi(z) = π− 1
2 |z|− 1

4 cos

(

γ +
π

4

)

, (42)

Ai′(z) = −π− 1
2 |z| 1

4 cos

(

γ +
π

4

)

, (43)

Bi′(z) = π− 1
2 |z| 1

4 sin

(

γ +
π

4

)

, (44)

where

γ = 2
3 |z| 3

2 . (45)

Apparently, Ai(z), Bi(z), Ai′(z) and Bi′(z) are all oscillating functions of z when z � −1,
which is basically distinct from the case of z � 1 giving in equations (23)–(26).

Substituting equations (23)–(26) and (41)–(44) into equation (14) respectively for the
points z = z0 and zd, one has

TσLσR = 8̃kσL k̃σR κ̃Lk̃d
(
κ̃2

L + k̃2
σL

) [
k̃2

d + k̃2
σR

+ (̃k2
d − k̃2

σR
) sin(2γd)

]e−2γ0 , (46)

where

k̃d = 1

mB

(
2mB

h̄2

)1/2 (
EB

x − φ0 + eV
)1/2

, (47)

γ0 = 2(2mB/h̄2)1/2d

3eV

(
φ0 − EB

x

)3/2
, (48)

γd = 2(2mB/h̄2)1/2d

3eV

(
EB

x + eV − φ0
)3/2

. (49)

Using equation (46), the approximate TMR can be calculated; the results are shown by the
dotted curve within the high-bias region in figure 2. Obviously, in this region the approximate
and the exact curves still agree very well. The approximation supplies us with a convenient
tool to analyse the mechanism for the oscillation of TMR occurring in the high-bias regime.

In analogy to the low-bias region, we can, with the help of equation (46), reformulate�J
as

�J = em

4π2h̄3

∫

dEL
x

∫

dEL
t B(EL

x , EL
t , V )C(EL

x , EL
t , V )

× exp (−2γ0)
[

f (EL
x + EL

t )− f (EL
x + EL

t + eV )
]
, (50)

where

B(EL
x , EL

t , V ) = 8̃κL(̃kL↑ − k̃L↓)(̃κ2
L − k̃L↑k̃L↓)

(̃κ2
L + k̃2

L↑)(̃κ
2
L + k̃2

L↓)

× k̃d (̃kR↑ − k̃R↓)(̃k2
d + k̃R↑k̃R↓)

[̃k2
d + k̃2

R↑ + (̃k2
d − k̃2

R↑) sin(2γd)][̃k2
d + k̃2

R↓ + (̃k2
d − k̃2

R↓) sin(2γd)]
, (51)
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C(EL
x , EL

t , V ) = k̃2
d − k̃R↑k̃R↓

k̃2
d + k̃R↑k̃R↓

− sin(2γd). (52)

From equations (15) and (16), we have

k̃L↑ − k̃L↓ = 1

m

(
2m

h̄2

)1/2 [√

EL
x +�−

√

EL
x −�

]

> 0, (53)

k̃R↑ − k̃R↓ = 1

m

(
2m

h̄2

)1/2 [√

EL
x + eV +�−

√

EL
x + eV −�

]

> 0. (54)

The inequalities (53) and (54) are satisfied because the spin-up band has been assumed to be
the majority band. As is the usual case for experimental FM metals, the effective polarization
of the FM electrode [4],

Peff =
(
k↑ − k↓

)

(
k↑ + k↓

) ·
(
κ2 − k↑k↓

)

(
κ2 + k↑k↓

) , (55)

is chosen to be positive, and thus we have κ2
L − kL↑kL↓ > 0. This implies that

κ2
L − mB

m
kL↑kL↓ > 0, (56)

when mB/m < 1. Therefore, from equations (7), (15), (29) and (38), one finds

κ̃2
L − k̃L↑k̃L↓ = 1

mBm

(
κ2

L − mB

m
kL↑kL↓

)
> 0. (57)

Combining equations (53), (54) and (57) results in

B(EL
x , EL

t , V ) > 0, (58)

that is to say, the factor B(EL
x , EL

t , V ) is always positive regardless of the magnitude of the
bias voltage. As for the factor C(EL

x , EL
t , V ), observing

−1 � sin(2γd) � 1, (59)

−1 <
k̃2

d − k̃R↑k̃R↓
k̃2

d + k̃R↑k̃R↓
< 1, (60)

one can see from equation (52) that the sign of C(EL
x , EL

t , V )will change with γd. According to
equation (49), γd is a function of V . Therefore, the factor C(EL

x , EL
t , V ), being a sine function

of γd, will oscillate between positive and negative values sinusoidally with increasing bias
voltage. As a combined result of B(EL

x , EL
t , V ) and C(EL

x , EL
t , V ),�J and consequently the

TMR of equation (22) will oscillate with increasing applied voltage. That is the microscopic
reason for the oscillation effect of TMR in the high-bias region. Physically, if the bias voltage
(eV ) is larger than the barrier height (φ0 −µ), the electrons near the Fermi level will enter into
the conduction band of the barrier and then be reflected by the right electrode–barrier interface.
It is just this interference between the incident and reflected waves that is microscopically
responsible for the oscillation of TMR within the high-bias region. This oscillation cannot
be simply ascribed to the Fowler–Nordheim oscillation [5] because there does not exist any
reflected wave in the latter case.

As pointed out in [13], the asymptotic approximations of (23)–(26) and (41)–(44) agree
very well with the exact Airy functions Ai(z), Bi(z), Ai′(z) and Bi′(z) except for z ≈ 0.
Therefore, a nonnegligible difference between the exact (the solid curve) and approximate
(the dotted curve) TMR in figure 2 can appear only within a very small interval near the
point eV = φ0 − µ where zd ≈ 0. For this reason, the rigorous transmission coefficient of



4130 Y Ren et al

0 2 4 6 8 10

-20

0

20

40 κ
F

2/k
F↑

2=0.6

κ
F

2/k
F↑

2=0.5

κ
F

2/k
F↑

2=0.4

T
M

R
(%

)

Bias voltage (V)

Figure 4. The curves of TMR versus bias voltage for junctions with different relative barrier heights
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F↑ = 0.6, 0.5 and 0.4. The other parameters are EF↑ = 5 eV, mB/m = 1, kF↓/kF↑ = 0.22,

d = 20 Å.

equation (14) and the exact Airy functions have to be used for the calculation of TMR within
this small middle interval between the low- and high-bias regions.

A rectangular barrier potential at zero bias makes it convenient for us to elucidate
analytically the mechanisms for the oscillation effect and the sign-change behaviour of TMR.
This potential rises abruptly when it goes from the electrode into the barrier. Of course, such
an abrupt step at the electrode–barrier interface is somewhat simplified. A more realistic
potential for the FM/I/FM junction should take into account the rising rate of the potential
between the electrode and the barrier, which will modify the potential shape into a trapezium
from a rectangle, as has been successfully done by Montaigne et al [5]. The numerical results
of [5] show that the oscillation effect and the sign-change behaviour of TMR still exist even
if the potential shape is a trapezium, although the details of TMR are modified. In addition,
the interface quality of FM/I/FM junctions can be improved by modern technology [14].
Therefore, the adoption of a rectangular barrier potential is reasonable for revealing the physical
mechanisms of the oscillation effect and the sign-change behaviour of TMR.

3.3. Effects of the barrier height, barrier width and effective mass

We now turn to investigate and discuss the effects of the relative barrier height (κ2
F/k2

F↑), barrier
width (d) and effective mass (mB) on TMR.

From the rigorous transmission coefficient and the exact Airy functions, the curves of
TMR versus bias voltage are obtained numerically for various barrier parameters κ2

F/k2
F↑, mB

and d; these are shown in figures 4–6, respectively.
As an overview, the TMR first drops with increasing bias voltage, changes its sign at

a critical voltage Vc, and arrives at its first minimum at Vmin. Then, it goes upwards and
starts oscillating. This indicates that the sign-change behaviour in the low-bias region and the
oscillation effect in the high-bias region are both general behaviours of the bias-dependent
TMR in FM/I/FM junctions.

With regard to the sign-change behaviour in the low-bias region, the critical voltage Vc

of the TMR increases with the relative barrier height κ2
F/k2

F↑, but decreases with the electron
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mB/m = 1, kF↓/kF↑ = 0.22,
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effective mass mB or barrier width d , as shown in figures 4–6. These behaviours originate
physically from the strong energy dependence of the prefactor A(EL

x , EL
t , V )D(EL

x , EL
t , V )

in equation (33), and especially from the quantum-coherence factor D(EL
x , EL

t , V ), as already
pointed out in [3, 6–8].

The first minimum of the TMR always occurs at Vmin in the small middle interval, which
can be estimated approximately as

eVmin ≈ φ̃0 − µ, (61)

where φ̃0 is the renormalized barrier height,

φ̃0 = φ0 + EL
t

(
m

mB
− 1

)

. (62)

Equation (61) together with (62) indicates that Vmin will increase with the barrier height φ0

but decrease with the effective mass mB, which is in agreement with the numerical results of
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figures 4–6. In order to observe Vmin and even the oscillating TMR experimentally, a junction
with a lower barrier height and a larger mB/m is needed.

Finally, we discuss the influences of mB and d on the oscillation of TMR. As mentioned
above, the oscillation behaviour arises from the function sin(2γd). When sin(2γd) = −1, i.e.,

4

3
d

(
2mB

h̄2 eV

)1/2

= 2π

(

n +
3

4

)

, n = 0, 1, 2, . . . , (63)

the tunnelling magnetoresistance reaches its extrema. This indicates that the nth extremum
appears at Vn , where

eVn = 9π2h̄2

8mBd2

(

n +
3

4

)2

. (64)

Therefore, the period T of oscillation is

T = eVn+1 − eVn = 9π2h̄2

16

4n + 5

mBd2
. (65)

Obviously, the period T is not a constant but increases with the number n. For a fixed n,
equation (65) demonstrates that the oscillating period of the TMR will reduce with the increase
of either mB or d . The analysis agrees well with the numerical results shown in figures 5 and 6,
respectively.

As regards the amplitude of TMR oscillation, it decays with the applied voltage; this is
because, as pointed out in [3, 6–8], the denominator JP(V ) of equation (22) increases rapidly
with applied voltage.

3.4. Comparison with experiments

Based on the above discussion, we will try to compare the theoretical results with experiments,
qualitatively.

Three theoretical curves of TMR obtained from the rigorous transmission coefficient,
equation (14), and the exact Airy functions are presented in figure 7: curve A corresponds to
κ2

F/k2
F↑ = 0.50 and mB/m = 0.4, curve B to κ2

F/k2
F↑ = 0.40 and mB/m = 0.6, and curve C to

κ2
F/k2

F↑ = 0.23 and mB/m = 1.0. Physically, they represent three different kinds of junction.
Curve A stands for a junction with a high barrier and a small mB, curve B for a junction with
a lower barrier and a larger mB, and curve C for a junction with the lowest barrier and largest
mB.

As can be seen in figure 7, curve C decreases rapidly and changes its sign with increasing
bias voltage. After reaching the first minimum, it begins to bend upwards, showing a small tail
until the applied voltage goes beyond the measurable range. Such features are in agreement
with the TMR experiments on the Ta2O5-barrier junction [2]. Therefore, according to the
present theory, the tail can be considered as a remnant part of the TMR oscillation within the
measurable range.

Historically, for metal/insulator/metal (M/I/M) tunnel junctions, Gundlach [10] predicted
theoretically that the tunnelling current can oscillate with the bias voltage. Later, in 1974, upon
improving the sharpness (or abruptness) of the interface between the electrode and the barrier,
Maserjian [15, 16] observed oscillation of the tunnelling current in MOS structures. Recent
research [14] indicates that the interface quality can be technically improved in FM/I/FM
junctions. This makes us believe that parts of the TMR oscillation other than only the tail may
also be observed in future.

In contrast to curve C, curve A decreases monotonically with increasing bias voltage,
but remains positive before the breakdown of the junction. This agrees with and thus can
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F↑ = 0.23 and mB/m = 1.0. The other parameters are EF↑ = 5 eV,

kF↓/kF↑ = 0.22, d = 20 Å.

be used to explain the experimental curve of the Al2O3-barrier junction. In comparison with
Ta2O5 [17], Al2O3 has a much smaller mB [18] and a larger work function [19] (i.e., a larger
relative barrier height). These will lead to both a higher Vc and Vmin, according to the analysis
in the preceding subsection. That is the physical reason why the Al2O3-barrier junction does
not exhibit any sign-change or oscillating behaviour within the experimental measurable range
of the bias voltage.

In contrast to both curves A and C, curve B changes its sign but does not show a bending-up
tail within the measurable range. This kind of TMR has already been observed in the ZrOx -
barrier junction [20]. Probably, it indicates that the barrier height of the ZrOx -barrier junction
is higher than that of the Ta2O5-barrier junction, but lower than that of the Al2O3-barrier
junction.

The above discussions demonstrate that the free-electron-like model with parabolic bands
can successfully describe the essential physics of the FM/I/FM tunnelling junctions, although
it cannot describe the detail electronic structures of ferromagnetic metals.

4. Conclusions

We have presented a unified spintronic theory,which is suitable not only for low-bias tunnelling
but also for high-bias tunnelling. Within this theory, the barrier potential is trapezoidal, and
can be solved exactly by Airy functions.

The asymptotic expressions of Airy functions are employed to study the physical
mechanisms for the sign change and the oscillation of TMR, analytically. We find that the
sign-change behaviour of TMR can occur only in the low-bias region. Physically, it originates
from the quantum coherence in the FM/I/FM system. In the high-bias region, the electrons near
the Fermi level will enter into the conduction band of the barrier and then be reflected by the
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electrode–barrier interface. As a result of the interference between the incident and reflected
waves, the TMR will oscillate between positive and negative with the applied voltage in the
high-bias region. The effects of the barrier height φ0, barrier width d and the electron effective
mass in barrier mB on TMR have also been discussed. It turns out that a junction with a lower
barrier height and a larger mB/m is needed for TMR to show oscillation within the measurable
range of bias voltage. With this reason, one can easily understand the bias dependences of
TMR observed experimentally on Al2O3- and Ta2O5-barrier junctions. For the Al2O3-barrier
junction, which has a large barrier height φ0 and a very small mB/m, the TMR will remain
positive within the measurable range. In contrast, the Ta2O5-barrier junction has a lower
barrier height φ0 and a larger mB/m, so its TMR will change in sign at a critical voltage, then
bend upwards and begin to oscillate with a small tail appearing before the breakdown of the
junction. These results demonstrate that the present theory is in quite good agreement with
the experiments.

Finally, it is worth noting that Tsymbal and co-workers [21] find an interesting result,
namely that the tunnelling magnetoresistance can be inverted at low bias via the localized
states in the barrier. Physically, such localized states will lead to indirect resonant tunnelling.
In order to discuss this interesting property of TMR, one needs to take further into account
the resonant tunnelling arising from the localized states, in addition to the direct tunnelling
considered in the present paper. This study is in progress and will be published elsewhere.
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